Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media

نویسندگان

  • Patrick Jenny
  • Seong H. Lee
  • Hamdi A. Tchelepi
چکیده

We describe a sequential fully implicit (SFI) multi-scale finite volume (MSFV) algorithm for nonlinear multi-phase flow and transport in heterogeneous porous media. The method extends the recently developed multiscale approach, which is based on an IMPES (IMplicit Pressure, Explicit Saturation) scheme [P. Jenny, S.H. Lee, H.A. Tchelepi, Adaptive multiscale finite volume method for multi-phase flow and transport, Multiscale, Model. Simul. 3 (2005) 50–64]. That previous method was tested extensively and with a series of difficult test cases, where it was clearly demonstrated that the multiscale results are in excellent agreement with reference fine-scale solutions and that the computational efficiency of the MSFV algorithm is much higher than that of standard reservoir simulators. However, the level of detail and range of property variability included in reservoir characterization models continues to grow. For such models, the explicit treatment of the transport problem (i.e. saturation equations) in the IMPES-based multiscale method imposes severe restrictions on the time step size, and that can become the major computational bottleneck. Here we show how this problem is resolved with our sequential fully implicit (SFI) MSFV algorithm. Simulations of large (million cells) and highly heterogeneous problems show that the results obtained with the implicit multi-scale method are in excellent agreement with reference fine-scale solutions. Moreover, we demonstrate the robustness of the coupling scheme for nonlinear flow and transport, and we show that the MSFV algorithm offers great gains in computational efficiency compared to standard reservoir simulation methods. ! 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolut...

متن کامل

An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media

Several multiscale methods for elliptic problems that provide high resolution velocity fields at low computational cost have been applied to porous media flow problems. However, to achieve enhanced accuracy in the flow simulation, the numerical scheme for modeling the transport must account for the fine scale structures in the velocity field. To solve the transport equation on the fine scale wi...

متن کامل

Simulation of Water Coning in Oil Reservoirs Using a Corrected IMPES Method

Implicit pressure-explicit saturation method (IMPES) is widely used in oil reservoir simulation to study the multiphase flow in porous media. This method has no complexity compared to the fully implicit method, although both of them are based on the finite difference technique. Water coning is one the most important phenomenon that affects the oil production from oil reservoirs having a water d...

متن کامل

Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media

We present a multiscale finite-volume (MSFV) method for multiphase flow and transport in heterogeneous porous media. The approach extends our recently developed MSFV method for single-phase flow. We use a sequential scheme that deals with flow (i.e., pressure and total velocity) and transport (i.e., saturation) separately and differently. For the flow problem, we employ two different sets of ba...

متن کامل

Effect of Water Gas Shift Reaction on the Non-Isothermal Reduction of Wustite Porous Pellet Using Syngas

Effect of water gas shift reaction (CO+H2O=CO2+H2) on wustite reduction has been investigated by a transient, non-isothermal mathematical model based on grain model. In this model, wustite porous pellet is reduced using Syngas, namely a mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor. For this purpose, governing equations containing continuity equation of species and energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2006